Editorial Note

Work Reports / Cooperation
NPT- Group: Courage et Persévérance.
ArcheaNova e.V., ex oriente e.V., and Friends of 'Ain Ghazal e.V.: Invitation to Join the Forum Neo-Lithics.

Current Field Research
Ufuk Esin: Aşıkk Höyük Excavations.
Nur Balkan-Atli: Kaleztepe, an Obsidian Workshop in Central Anatolia.
O. Marder, H. Kbalally, E. Barzilay, and M. Patrson-Solemani: Recent Excavations at Abu Ghosh.

Contributions
Miquel Molist, Toni Palomo, and Arnau Ferrer: The Evolution of the Tell Halula (Syria) Chipped Stone Industry During the 9-8th Millennia bp.

Neolithic Research by Near Eastern Countries
Abbas Alizadeh, Jalal Rafifar, and Sadegh Malek Shahmirzadi: Iranian Neolithic Research.
Ufuk Esin and Nur Balkan-Atli: Current Research on the Neolithic of Anatolia by the Prehistory Section, University of Istanbul.

How the Rabbit killed Flint (found in AAA 3, 1910)

Notes and News
New Books and Recent Doctoral Dissertations

Neo-Lithics Order Form

NEO- LITHICS 1/96
A Newsletter of Southwest Asian Lithics Research
Editorial Note

In order to promote the aims of this newsletter on a wider scale, we decided to offer a new type of possible interaction as available with the new on-line facilities. We expect that over the time more and more colleagues will join these electronic services. As a first step, the mailing list ForumNeo-Lithics (details see the invitation in this newsletter) was created, an open forum of discussion for promoting cooperation in Neolithic research in the Eastern Mediterranean and the Middle East. This was established in cooperation with Klaus Schmidt, ArchaeNova e.V. Heidelberg.

Important discussions or contributions in this forum may occur in print in this newsletter.

The discussion forum is part of a planned Website, provisionally named Prehistoric Sites, which will be maintained by the associations of ArchaeNova, ex oriente, and the Friends of 'Ain Ghazal. As a service section (bibliographies), a section for on-line publication (e.g. Neo-Lithics is thought to appear here, too), and a section for on-line cooperation (e.g. the handbook on chipped Neolithic industries under construction). This not means that our small newsletter will get obsolete, it well may gain in addition a sort of readers' digest function. Let us see how the new possibilities allow to develop our goals.

Gary O. Rollefson Hans Georg Gebel Stefan Karol Kozlowski

Courage et Persévérance

A note on cooperation by the enlarged NFT-Group
Meeting at Marouatte (8th of June, 1996)

Based on earlier considerations in Berlin of the urgent need for scientific cooperation in the field of Neolithic chipped stone industries, the members of an enlarged NFT-group devoted one day of their Marouatte meeting (see also the Notes and News section in the newsletter) to discuss the situation and the problems of the working groups 3 years after the end of the initial meeting in Berlin in 1993. The issue had to be raised since he work of the NFT-Group started to suffer from the lacking work of other subgroups necessary to rely on.

It is clear that several of the working groups have ceased to exist as functioning committees, and this development has affected not only the progress of those working groups, but of the NFT group as well. Therefore the participants at Marouatte discussed possibilities for the reorganization of the working groups in order to achieve the goals of the Berlin agreements.

Certainly one of the problems has been the global separation of participants. The expectation that people from one side of the world could meet frequently with colleagues from the other side of the earth to discuss the development of a "handbook" was not realistic. This logistical problem can now be resolved to a great extent by the availability of of-line Internet interaction, and an interactive Website section now under construction will be available to facilitate this kind of communication.

The proposal is that the website will consist of four sections (technology, microwear, formal tools and non-formal tools) for interactive discussion (and archiving) of the development of modules for the handbook. Each section will be coordinated by a "server" who will organize the comments and suggestions directed towards particular themes. The NFT module, compiled from the reports published in earlier Neo-Lithics and further inserts, may serve as an example/prototype for the other committees; this module will be available on the Website by autumn 1996. More details and the address of the Website will appear in the ForumNeo-Lithics (see below) and the next issue of Neo-Lithics.

It is hoped that the reorganization will stimulate a renewed dedication to the aims of a mutually acceptable approach for the description, analysis and interpretation of Neolithic chipped stone industries in the Near East. Members of the former working groups will be contacted in the near future concerning new agendas.

We thank Lorraine Copeland for providing to us the headline of this Marouatte Memorandum: Courage et Persévérance.

Work of the NFT-Group at Chateau de Marouatte.

Invitation to Join the ForumNeo-Lithics, an Open Forum of Discussion for Promoting Cooperation in Neolithic Research in the Eastern Mediterranean and the Middle East, and Related Subjects

maintained by
ArchaeNova e.V., Heidelberg
ex oriente e.V., Berlin,
and Friends of 'Ain Ghazal e.V., Wembach

A) You may subscribe to the mailing list of ForumNeo-Lithics by sending an e-mail to the address
macjordomo@mcserv.zedat.fu-berlin.de
while writing in the text section "subscribe ForumNeo-Lithics". Behind these words, please add your name in the style as written in your e-mail address (the name in <...>), e.g. 'subscribe ForumNeo-Lithics Hans Georg Gebel'. Then send off the e-mail.

B) You should receive -after automatic registration and some time-a response saying: 'Your subscription to mails to the address macjordomo@macserver.zedat.fu-berlin.de has been processed and you are now a subscriber to forumneo-lithics'. With that you also should receive a list of instructions, which we recommend that you print it out.

C) Communication: Whenever you want to contact a wider range of colleagues with questions, communications, or useful information on our subject, or have contributions to current discussions in the mail group, please send these -after subscription- as ordinary e-mails to the address
Neo-Lithics@mcserv.zedat.fu-berlin.de
All subscribers of the address will automatically receive your message. In return, you will find in your e-mailbox messages of others whenever delivered to Neo-Lithics@masserver.zedat.fu-berlin.de.

D) Our forum provides the possibility of open discussion and communication. Information delivered here is not protected and should be used by readers according to the accepted academic rules. We reserve the right to cancel individual subscriptions, and other necessary measures to protect subscribers’ contributions. For personal messages please continue to use normal e-mail facilities. The forum supports aims of “Neo-Lithics. Newsletter of Southwest Asian Lithics Research”, which will continue to be issued biannually.

3.5 to 4.0 hectares, and some 0.4 ha have been excavated since 1989. Dated to 10,000 bp, it is the earliest known Holocene site in central Anatolia (ESIN 1994).

Stratigraphy. Three layers have been observed. The uppermost is much damaged and eroded due to agricultural activities, and only some floors were noticed. The middle layer is extensive and includes 10 building layers. The lowest layer has only been noticed in a vertical section cut by the river and has not yet been reached by excavations. On the south side of the mound, near the river, structures covered by an alluvial deposit have also been found.

Architecture and settlement patterns. The architecture at Aşıklı Höyük is mud brick, with stone observed only in the surrounding walls of the settlement. Houses are rectangular in plan and closely knitted together, forming “sectors” separated by narrow passages. A large open area, used primarily as a refuse dump, takes up important space in the settlement. The site is set off by curved stone walls to the east that appear to limit the settlement’s extent in this direction: no cultural material was found to the east of these features, although potsherds are common, which suggest a more recent occupation in this part.

A stone-paved road is also noteworthy. It begins in the western part of the settlement and leads eastward, separating into two smaller “streets”. The settlement plan is different to the north and south of this road. Next to the road to the north is a big structure with chest-walls, but to the south is a large one-room structure with red plaster floors. Although it is difficult to determine relationships due to erosion in this part of the mound, the south also has many walls between smaller structures, perhaps suggesting some collective use for particular activities.

References

VAN ZEIST W. and DE ROLLER G.J. 1995 Lithic industry. Obsidian is almost the only raw material used in the chipped stone industry. The raw material was brought to the site in the form of blocks or tablets, and all the knapping took place on the site; the entire chaîne opératoire is represented. It is primarily a blade industry. There are some irregular flake cores, but the majority are naviform blade cores. Retouch modified pieces are represented by microliths and geometrics, which are quite abundant in the lower building layers (as are microburins) and backed blades, backed pointed blades, truncated blades and scrapers, which are numerous in all layers, but especially so in the upper layers. Projectile points are poorly represented, but they include a single-shouldered point (Aşıklı point). Double-shouldered points are present but only in limited numbers in the upper layers. Pressure-flaked arrowheads were found only in disturbed surface contexts, so they probably belong to the latest eroded layers. Burins and piercing tools are rare (Balkan-Atli, pers. comm.).

The ground stone industry is represented mainly by grinding slabs and grinding stones, mortars, polishing stones and stone balls (bolas).

Varia. It is interesting to note the presence of copper beads that were produced by pyrotechnology (ESIN 1995) and lightly fired small tokens. Figurines are absent, but there are some abstract objects of baked clay.

Concluding remarks. Aşıklı Höyük presents an architecturally and (probably) socially well developed village with a subsistence economy based primarily on wild game and fruits, with agriculture focused on cereals. The village is also made interesting by its domestication. Sheep and goats were the most prominent prey, and other animals included Bos sp., boar, deer, horse and hare and other small game. There is also evidence for bird hunting and fishing (BÜTENHÜIS n.d.).

The floral remains include domesticated crops such as emmer, einkorn and durum wheat, barley, and to a more limited extent pulses, including bitter vetch, lentils and peas. Fruits and nuts are represented by huge amounts of hackberry (Celtis sp.) stones and lesser amounts of Pistacia and wild almond VAN ZEIST and DE ROLLER 1995.)

Aşıklı Höyük Excavations

Ufuk Esin
Istanbul University

Aşıklı Höyük is situated near the Melendiz River in the province of Aksaray, a volcanic region surrounded by basalt, andesite and tuff rocks. The Aşıklı Höyük settlement covers about 3.5 to 4.0 hectares, and some 0.4 ha have been excavated since 1989. Dated to 10,000 bp, it is the earliest known Holocene site in central Anatolia (ESIN 1994).

Aşıklı Höyük is situated near the Melendiz River in the province of Aksaray, a volcanic region surrounded by basalt, andesite and tuff rocks. The Aşıklı Höyük settlement covers about 3.5 to 4.0 hectares, and some 0.4 ha have been excavated since 1989. Dated to 10,000 bp, it is the earliest known Holocene site in central Anatolia (ESIN 1994).

Architecture and settlement patterns. The architecture at Aşıklı Höyük is mud brick, with stone observed only in the surrounding walls of the settlement. Houses are rectangular in plan and closely knitted together, forming “sectors” separated by narrow passages. A large open area, used primarily as a refuse dump, takes up important space in the settlement. The site is set off by curved stone walls to the east that appear to limit the settlement’s extent in this direction: no cultural material was found to the east of these features, although potsherds are common, which suggest a more recent occupation in this part. A stone-paved road is also noteworthy. It begins in the western part of the settlement and leads eastward, separating into two smaller “streets”. The settlement plan is different to the north and south of this road. Next to the road to the north is a big structure with chest-walls, but to the south is a large one-room structure with red plaster floors. Although it is difficult to determine relationships due to erosion in this part of the mound, the south also has many walls between smaller structures, perhaps suggesting some collective use for particular activities.

Kaletepe, an Obsidian Workshop in Central Anatolia

Nur Balkan-Atli
Istanbul University

The Central Anatolian Obsidian Research Project, whose aim is to do an exhaustive inventory of the obsidian resources, workshops and prehistoric sites, began field work in 1995 (CAUVIN and BALKAN-ATLI n.d.). For the first year we limited our survey area to the Niğde region. The obsidian sources already known were revisited to see the extensions, and several new
The Kaletepe workshop is located in the village of Komorcu in the province of Niğde, known for its extensive obsidian sources. Komorcu is a part of the Gölİu Dağ volcanic system, a rhyolitic massif at the north of the Çiftlik Plain. The presence of chipped obsidian artifacts, including cores and debitage, were observed in scattered localities in and around the valleys near the obsidian sources.

In the summer of 1994, while visiting the area with geologist Dr. F. Saroglu, we discovered a workshop that, to our knowledge, had not been discovered before. Situated on a terrace dominating the modern village, the obsidian is scattered over a large area (ca. 150 x 150 m), and the artifacts include mostly naviform cores, large primary flakes and some crested blades. In 1995 we revisited the site as well as others in the region (CAUVIN and BALKAN-ATLI n.d.; in 1995 we also recovered single platform cores). The discussion below deals only with the collection made in 1994, since the 1995 samples are still under study.

Core characteristics

Our small sample of 1994 includes 23 bidirectional cores. As stated above they are long and narrow with triangular sections and highly standardized. All the cores were in their final state of use, left either because of exhaustion or because of accidents. Average dimensions: Length: 126.75 mm, width 25.77 mm, and thickness 27.77 mm.

Platforms. They are mostly flat (52.1%). No cortical platforms have been noted. Abrasion is rare (21.7%), whereas splintered platforms are common (73.6%).

The back of the cores. All cores had complete crests trimmed on both sides. The positions of the crests are central (73.9%) or slightly off-center (26%). The negative back-trimming scars are densely distributed and divergent, with 65% having deep negative bulbs.

Core face. The active part of the core is mostly straight (69.5%) and more rarely convex (13%) or irregular (17.4%). The ridges are parallel (62%), converging (21.7%) or irregular (13%).

The face of the cores shows mostly subsequent use (70%). Six of the cores bear hinge fractures.

Core accidents. Four of the seven incomplete cores were broken due to plunging (overshot) accidents. Similar core characteristics have also been noted for the Kayırlı-Bitikeler workshop (currently under study), although these are not as regular. More information will be available once the analysis of the 1995 sample is completed.

References

Recent Excavations at Abu Ghosh

O. Marder, H. Khalaily, E. Barzilay, and M. Patrson-Solemani
Israel Antiquities Authority

The Neolithic site of Abu Ghosh, located ca. 10 km west of Jerusalem, is situated in the Judean hills some 700 m above sea level. Located on a wide terrace on the bank of a small wadi traversing the village, it is only 50 m. northwest of Bir Nakush, a small well tapping a water table ca. 3 m. below the present surface.

The site was first recognized in the early 1920s by residents of a neighboring monastery who collected flint artifacts from the surface. Perrot (1950) excavated a few sondages on both sides of a road that bifurcates the site. In probes totaling ca. 500 m² in Area F, he unearthed PPNA archaeological remains. Lechevallier (1978) renewed excavations at Abu Ghosh, concentrating on Area F and additional test pits at the northern and western parts of the site.

Lechevallier uncovered a rectangular house with plastered floor and an architectural complex containing small square rooms, installations and associated burials. She concluded that the flint assemblage and architectural remains belong to a homogeneous occupation dating to the Pre-Pottery Neolithic B period. Her excavations and additional geophysical examinations indicated the physical parameters of the site.

The present excavations were initiated as a salvage project after unauthorized construction work caused severe damage to the northern part of the site. Two seasons were conducted by the authors on behalf of the Israel Antiquities Authority in February-April 1995 and October-November 1995. A total of 750 m² was excavated.

The excavation revealed 3 sedimentary units, 2 of which had archaeological remains. Most of the exposed architectural features belong to the PPNA period. These include walls, fragments of rooms, living spaces, installations, and burials.

Unit I: This uppermost unit (ca. 30-60 cm.) is cultivated, the active part of the core is mostly straight (69.5%) and more rarely convex (13%) or irregular (17.4%). The ridges are parallel (62%), converging (21.7%) or irregular (13%).

The face of the cores shows mostly subsequent use (70%). Six of the cores bear hinge fractures.

Core accidents. Four of the seven incomplete cores were broken due to plunging (overshot) accidents. Similar core characteristics have also been noted for the Kayırlı-Bitikeler workshop (currently under study), although these are not as regular. More information will be available once the analysis of the 1995 sample is completed.

References

Recent Excavations at Abu Ghosh

O. Marder, H. Khalaily, E. Barzilay, and M. Patrson-Solemani
Israel Antiquities Authority

The Neolithic site of Abu Ghosh, located ca. 10 km west of Jerusalem, is situated in the Judean hills some 700 m above sea level. Located on a wide terrace on the bank of a small wadi traversing the village, it is only 50 m. northwest of Bir Nakush, a small well tapping a water table ca. 3 m. below the present surface.

The site was first recognized in the early 1920s by residents of a neighboring monastery who collected flint artifacts from the surface. Perrot (1950) excavated a few sondages on both sides of a road that bifurcates the site. In probes totaling ca. 500 m² in Area F, he unearthed PPNA archaeological remains. Lechevallier (1978) renewed excavations at Abu Ghosh, concentrating on Area F and additional test pits at the northern and western parts of the site.

Lechevallier uncovered a rectangular house with plastered floor and an architectural complex containing small square rooms, installations and associated burials. She concluded that the flint assemblage and architectural remains belong to a homogeneous occupation dating to the Pre-Pottery Neolithic B period. Her excavations and additional geophysical examinations indicated the physical parameters of the site.

The present excavations were initiated as a salvage project after unauthorized construction work caused severe damage to the northern part of the site. Two seasons were conducted by the authors on behalf of the Israel Antiquities Authority in February-April 1995 and October-November 1995. A total of 750 m² was excavated.

The excavation revealed 3 sedimentary units, 2 of which had archaeological remains. Most of the exposed architectural features belong to the PPNA period. These include walls, fragments of rooms, living spaces, installations, and burials.

Unit I: This uppermost unit (ca. 30-60 cm.) is cultivated, the active part of the core is mostly straight (69.5%) and more rarely convex (13%) or irregular (17.4%). The ridges are parallel (62%), converging (21.7%) or irregular (13%).

The face of the cores shows mostly subsequent use (70%). Six of the cores bear hinge fractures.

Core accidents. Four of the seven incomplete cores were broken due to plunging (overshot) accidents. Similar core characteristics have also been noted for the Kayırlı-Bitikeler workshop (currently under study), although these are not as regular. More information will be available once the analysis of the 1995 sample is completed.

References

Syria

MBmoires

study of the site,

References

Abu Gosh et Beisamoun.

Most of the remains relating to 1952. Le NBolithique d'Abou-Gosh. 1978. 29: 119-145.

PERROT J.

is assumed that the settlement covered a minimal area of ca. 8000 m2.

et Travaux du Centre de Recherches Prehistoriques Frangais de Jerusalem 2.

settled. Two phases of structures are use during the later phase when walls were added.

LECKEVALLIER M.

including some test pits south of the excavated area, revealed Neolithic remains about 500 m away. Thus, based on data available at present, it is assumed that the settlement covered a minimal area of ca. 8000 m². A more complete report will appear in an upcoming issue of Atigot.

A Preliminary Survey of the al-Jafr Basin, Southeast Jordan

Sumio Fuji

Kanazawa University

As Y. Nishiaki briefly noted in NEO-LITHICS 2/95, Japanese teams have undertaken prehistoric research in the Near East for about forty years. More than ten projects have carried out intensive surveys and excavated various sites in Iran, Iraq and Syria, and a new generation has just begun work in Turkey. Jordan was the only exception to this trend, for no Japanese crews had challenged this informative land. This is quite strange, for most Japanese interest has concentrated on Neolithic studies, and Jordan no doubt played a critical role in the Neolithization of the Near East.

Last summer was the first, small step for us in Jordan. We carried out a short preliminary survey, focusing on Neolithic/Chalcolithic sites in the arid al-Jafr Basin in southeastern Jordan. The reasons we chose such a "sterile" area are the following: first, I have been interested for a long time in the Neolithization of the inland of the Levant (NISHIAKI and FUJII 1986; FUJII et al. 1987); second, the al-Jafr Basin, a region intermediate between the Palmyra, Damascus and Azraq basins to the north and the Wadi Hisma, Sinai and Negev regions to the south, should provide a sound comparative study of the distinctive inland adaptations of the prehistoric Levant; and third, the basin has been left relatively intact since the pioneering works carried out earlier this century by FIELD (1960); RHOTERT (1938) and HUCKRIEDE and WIESEMANN (1968).

We located several sites in this flat landscape, including some Paleolithic flint scatters and Paleol-Redouin camp sites. Unfortunately, we found no Neolithic sites during the short period of time we were in the field; however, an interesting Chalcolithic site (JF9503) was discovered in the northwest part of the basin.
Obsidian was knapped in the same way through all the pe-}

At the end of the 9th millennium the situation changed

There are clear changes in the knapping methods used on

The siliceous materials used by Tell Halula inhabitants, mainly

Technology

There are clear changes in the knapping methods used on

For branch or branch supports, not as prey-guiding ‘cairns’ or as hides for hunters (BRINK and ROLLINS 1990).

The absence of virtually any cortex suggests that obsidian arrived

Retouched Tools

The absence of virtually any cortex suggests that obsidian arrived

The presence of two small cores

The absence of virtually any cortex suggests that obsidian arrived

There is reliable though sporadic evidence for communal drives used that flags. The famous fresco in the Umayyad Qusayr ‘Amra that depicts an onager drive is one example, and the Portuguese traveler Pedro Teixeira came across similar kites near Taibe, east of Palmyra (LEYG and ROWLEY-CONWAY 1987: 81). As for the use of branches in animal drives, the wall paintings at Umm Dabaghiah and the rock engravings on Hani’s Cairn might be plausible candidates. Also, drives of Scandinavian and Siberian reindeer and North American bison provide additional evidence for flag or branch guides (cf. INGOLD 1980:57-58).

The tentative interpretation that JP9503 represents a flag/branch type of kite site is therefore worthy of testing. It might reveal a concrete picture of the mixed economic base of Chalcolithic ovicaprine pastoralists, who seem to have depended substantially on gazelle hunting (see HENRY 1993:368-369). Also, JP9503 is of special interest in that it might bridge the spatial hiatus of kite distribution in the northern and southern regions of the Levant.

Acknowledgments: I wish to express my gratitude to Dr. G. Bisheh, Director-General of the Antiquities Department of Jordan, for his generous permission for the survey, and to Dr. F. Zayadine for his kind help.

References

BRINK J. and ROLLINS M.

FIELD H.

FUJI S. AKAZAWA T., NISHIAKI Y., and WADA H.

HELMS S. and BETTS A.

HENRY D.

HUCKERBREIT R. and HENRY, J.

INGOLD T.

There is reliable though sporadic evidence for communal drives used that flags. The famous fresco in the Umayyad Qusayr ‘Amra that depicts an onager drive is one example, and the Portuguese traveler Pedro Teixeira came across similar kites near Taibe, east of Palmyra (LEYG and ROWLEY-CONWAY 1987: 81). As for the use of branches in animal drives, the wall paintings at Umm Dabaghiah and the rock engravings on Hani’s Cairn might be plausible candidates. Also, drives of Scandinavian and Siberian reindeer and North American bison provide additional evidence for flag or branch guides (cf. INGOLD 1980:57-58).

The tentative interpretation that JP9503 represents a flag/branch type of kite site is therefore worthy of testing. It might reveal a concrete picture of the mixed economic base of Chalcolithic ovicaprine pastoralists, who seem to have depended substantially on gazelle hunting (see HENRY 1993:368-369). Also, JP9503 is of special interest in that it might bridge the spatial hiatus of kite distribution in the northern and southern regions of the Levant.

Acknowledgments: I wish to express my gratitude to Dr. G. Bisheh, Director-General of the Antiquities Department of Jordan, for his generous permission for the survey, and to Dr. F. Zayadine for his kind help.
Points generally lose importance in the latest period, falling to only 10% of the tool kit. Despite the technological changes at the end of the 9th millennium, continuity is shown in the choice of the best quality flint for points and the use of flat laminar retouch to reduce the bulb convexity to facilitate hafting (FERRER n.d.).

Blades, defined by the presence of macroscopic traces of sheen regardless of blank type or the presence or retouch, are never a dominant tool type. In the PPNB they are mainly made on blades or bladelets, usually with continuous semi-abrupt retouch and occasionally with a slight denticulation. Gloss along the entire length of the edge and the location of bitumen traces indicate a longitudinal hafting. In the Pre-Halaf layers the blanks are more diverse and backed elements become more popular. The gloss is normally diagonal across only part of the edge, supporting a hafting method proposed for Tell Assouad.

Retouched blades and flakes are common throughout the Tell Halula sequence. In the PPNB sectors retouched blades range close to 20%, but flakes reach only around 5%; in the Pre-Halaf sector this relationship is reversed, with retouched flakes at ca. 40%, double the figure for retouched blades. The change in the blank ratio is gradual rather than abrupt throughout the three-period sequence. These opportunistic, non-formal tools represent about 30% of the M/LPPNB tools, while in the Pre-Halaf they reach 70%.

Other tools also show important changes over time at Tell Halula, in part associated with the change in technology but also, perhaps related to different group structures and economic strategies. Simple or double end-scrappers that accounted for up to 40% of the tools in the MPPNB levels became much more diversified in form (usually very thick and with inverse retouch) in the Pre-Halaf period, but they never exceeded 6%. Transverse, dihedral and angle burins are found throughout the succession (never more than 10%), but there is an inverse relation with scraper popularity. Notch-denticulate tools and borers are always less than 10%, although there is a tendency for the former to increase at the turn of the millennium at the expense of the latter; larger borers types (e.g., "mêches") disappear completely by the Pre-Halaf.

Obsidian tools are relatively rare and mostly are confined to fine unretouched bladelets (or bladelets with restricted marginal retouch). Corner-thinned blades are numerically important as early as the MPPNB; variable in size, retouch occurs consistently in the D1/D4-V1/V4 position (e.g., NISHIYAMA 1990). There are also a few bladelets with isolated flat burin retouch on the end, a few truncations, one borer, a tanged piece, and two possible side-dow blade flakes. Three bladelets have traces of bitumen on one surface and were potentially hafted as sickle elements.

Concluding Remarks

Tell Halula has an uninterrupted sequence spanning more than 2,000 years, which included important archaeological changes, including aspects of lithic manufacture that involved resource acquisition, knapping methods, and the kinds of tools that were used. The historical meaning of these changes, beyond a strictly culturalist point of view, is the challenge to be confronted.

References

Blade:Flake and Blade:Blade Ratios as Phase Discriminators

Gary O. Rollefson
‘Ain Ghazal Research Institute

One of the principal differences observed at ‘Ain Ghazal among the chipped stone artifact assemblages in the 7th and 6th millennia bc (uncal.) was a major shift in the blade:flake ratios of the debitage. This aspect of the Ghazalian industry, along with major changes in architecture, subsistence economy and ritual practices, was a strong argument to characterize the archaeological phenomena of the first half of the 6th millennium as the PPNC, a phase of development that contrasted with these cultural aspects of the MPPNB and LPPNB phases in the southern Levant (ROLLEFSON and SIMMONS 1986: 160-161; ROLLEFSON 1990: 122-123).

Acknowledging that sorting for the ‘Ain Ghazal debitage assemblages uses a technological and not a metric definition of blades, the distinctions of blank production between the MPPNB and LPPNB versus the PPNC are important in regards to the behavioral choices flint workers used in the manufacture of their tools. In addition to the fact that flakes dominated over blades by 2:1 in the PPNC, there was a major change in terms of the chaînes opératoires for blade production, from the reliance on naviform production in the earlier periods to one that increasing-ly relied on non-opposed platform blade cores in the PPNC. Cores from the different phase assemblages at ‘Ain Ghazal demonstrate this change very clearly (QUINTERO, pers. comm.), but it is the case that the specific sub-assemblages ("loci"), or cultural strata identified in the excavation) often have few or no cores at all in some of the earlier periods. While the production of blanks (blade:flake ratio) is demonstrably distinctive in the comparison of the general LPPNB and PPNC assemblages at ‘Ain Ghazal, there are major problems in using this particular ratio to discriminate between LPPNB and PPNC artifact collections from specific loci. Obviously, the blade:flake ratio directly reflects particular activities undertaken at specific times in certain places. Chipping floors are relatively numerous in the MPPNB and LPPNB at ‘Ain Ghazal, and in these loci the blade:flake ratio is very low. (Notably, chipping floors are absent in the PPNC and Yarmoukian; ROLLEFSON and KÖHLER-ROLLEFSON 1993: 35). Outside the areas of M/LPPNB core preparation, the blade: flake ratio rises very high, so that overall the 7th millennium blade:flake ratio is roughly 1:1.

The absence of obvious chipping floors at ‘Ain Ghazal in the PPNC has been an important in itself, for it indicates that the role of specialization in tool manufacture in the PPNC (QUINTERO and WILKE 1995) had utterly dissolved early in the 6th millennium. Even so, if everyone who needed a stone tool in the 6th millennium had to make it himself/herself, blades were still desired, even if at a different scale of standardization. And, perhaps reflective of the skills needed by someone in the "naviform guild" of the 8-7th millennia, most of the blades in the 6th millennium came from single-platform blade cores, and the blades typically had thick, broad platforms, massive bulbs of percussion, and were usually short and relatively thick. This is suggestive that tool production had changed from an earlier specialized industry to an ad hoc, "as needed" method of self-reliance for tool production.

Returning to the blade:flake ratio as a difference between the PPNB and PPNC, the general finding has been that these two Middle Stone Age researchers (e.g., GORING-MORRIS 1991: 96) due to particular loci situations, as has been discussed in the previous two paragraphs. But Goring-Morris is correct in issuing his cautionary note: distinguishing between LPPNB and PPNC loci or subassemblages cannot rely on the blade:flake ratio alone. And this problem of distinguishing LPPNB and PPNC loci (strata based on the blade:flake ratio) has been the source of difficulty of the 1993-95 excavation seasons at ‘Ain Ghazal.

The difficulty of distinguishing between LPPNB and PPNC loci at ‘Ain Ghazal relate to the transitional nature of the occupation at the settlement. The long-held cultural practices, including tool production, of the LPPNB were not suddenly replaced by PPNC counterparts. ‘Ain Ghazal underwent a continuous process of accommodation to the social and environmental circumstances, and a continuum, of sorts, should be expected in the material.
expression of this development. Not only was there a change of who was making blades (specialists mostly in the PPNC) and where they were doing it (the PPNC chipping floors), but the PPNC blades makers were producing their blades in a different way (abandonment of the naviform technique). The difference in how blades were made, then, becomes the deciding criterion, not the simple ratio of flakes to blades.

In the 1995 excavation season, limited lithic samples were selected to see if a more reliable indicator of an industrial characterization for different kinds of excavation loci could be developed in place of the disappointing blade:flake ratio. Noting the different methods of blade production, a new ratio was tested to compare the proportion of naviform blades to "normal" (or non-naviform) blades. This "blade:blade" ratio was much more consistent throughout the array of locus types, with generally high naviform:normal values for the LLPPN and much lower values for the PPNC loci. Samples from MPPBN and Yarmoukian periods have not been examined yet, but that is a priority in the upcoming 1996 excavation season, as well as continued testing of LLPPN and PPNC lithics samples.

If the promises of the blade:blade ratio prove to be of value for distinguishing between the 7th and 6th millennia industries (and we think this is likely), this ratio could be invaluable in characterizing surface sample collections in intensive surveys, which would be an invaluable aid in identifying PPNC settlements of the early 6th millennium. It is hoped that a further report on tests of this ratio can be published in the next issue of Neo-Lithics.

References

Iranian Neolithic Research

compiled by H.G. Gebel from information provided by Abbas Alizadeh, Jalal Rafifar, and Sadegh Malek Shahmirzadi

Tehran University (J.R./S.M.Sh.); Oriental Institute, Chicago (A.A.)

Since 1979 no extended field research has been carried out in the Iranian Neolithic. However, Iranian research on the Neolithic has continued on the basis of material analysis, documented in a number of articles, and a PhD dissertation (RAFIFAR 1988) were presented since then. Research continues at a restricted level, as it is true for all the prehistoric investigations. Nevertheless, since the reorganization of the functions the earlier Archaeological Service of Iran under the auspices of the Iranian Cultural Heritage Organisation, together with considerable financial support from governmental sources for rescue work and restoration, is gradually taking shape and a revival of prehistoric research must expected in future.

After the excavations of Late Neolithic Tepe Zaghe were completed in fall 1979 by Sadegh "Shahpur" Malek Shahmirzadi (Tehran University, Faculty of Letters and Humanities, Dept. of Anthropology), a number of articles appeared by him on this important site (Neolithic type site for the Iranian Plateau) in the Iranian Journal of Archaeology and History. Later he carried out a short survey in Semnan area at the fringes of the Dasht-e Kavir (1984), locating a few prehistoric sites to be examined in the future. In spring 1995 he conducted a test excavation at Tepe Puinak in the Varamin Plain south of Tehran, where at a depth of 4.50m below the present agricultural surface Late Neolithic strata were found. A small-scale survey by Shahmirzadi in the Masile Basin of the Great Kavir south of Tehran in 1993 revealed no Neolithic evidence, but a Mousterian site was found (SHAHMIRZADI in Paléorient 1994). He has submitted a proposal for a survey and the excavation of a cave site in the Khorraramabad area, Loristan, to the Iranian National Heritage Organization, which is now under review.

The first work carried out in the Neolithic by Jalal Rafifar (Tehran University, Faculty of Social Sciences, Dept. of Anthropology) was on the chipped stone industries of the Zagros and the Central Iranian Plateau, presented in his doctoral dissertation (RAFIFAR 1988). Following this research he concentrated on the study of Neolithic obsidian circulation and distribution patterns in the Middle East with special reference to the Iranian territories. Ignoring ill-investigated obsidian resources in Iran (such as those in Takestan, Gezul Tabas and Khashan), research on Iranian obsidian until then had concentrated in its possible origins outside Iran (Anatolia and eastern Turkey). Parallel to this re-search, Rafifar reconsidered the chipped stone sequence of Deh Luran (RAFIFAR 1994a) and restudied the obsidian industry of Koh-e Bonan (Kubbanan) near Kerman (RAFIFAR 1994b). His recent field research has concerned ethnoarchaeological work in the village of Hotai Bakhshian mountains (to appear in: Letter of Sociology 3 (NS): 34-58, Tehran University, Faculty of Social Sciences).

Abbas Alizadeh, Oriental Institute of Chicago and currently on sabatical in Iran, accepted responsibility for the final publications of Choga Mish, Choga Banut and Boneh Fazlii after the passing away of Helen Kantor in 1992. He completed the final reports on Choga Mish recently and they are expected to appear imminently; his work now concentrates on the preparation of the final publication of Choga Banut. This includes an intended small field investigation at Choga Banut in order to retrieve missing palaeobiological evidence for the earliest layers of this interesting site (one of the aims of his current stay in Iran), which so far is the earliest in the Susiana lowlands. Such samples would help considerably to understand the so far unknown character of the subsistence in the earliest Neolithic in the vast alluvial plains of the Susiana and southern Mesopotamia respectively.

<table>
<thead>
<tr>
<th>Wares</th>
<th>Phases</th>
<th>Sites on the Central Iranian Plateau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wheel-made pottery</td>
<td>Tepe Gharestan II-IV, Teik III, 1-2, Tepe Hissar I</td>
</tr>
<tr>
<td></td>
<td>lower Siak</td>
<td>Siak 1, 2, Chehme Ali, Mortaza Gird</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tepe Gharestan, Sagazabad 11-19, Mahmoudiye-West</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zaghe I-VIII, Ganj Tepe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Siak North (11-12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cheshme Ai, Khurjan Mahmoudabad</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cheshme Bo-Bd, Qum Rud</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Qarre Tepe Shariy, Turang Tepe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Qaleh Dukhtar, Yarim Tepe Puinak</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mahmoudiye East, Ghare-Kambar, Tepo Shoghull</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bariqan, Ghar-e Hotu, Shakhan Tepe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Golistan Palace, Tehran 9, Shir Asihan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suhakan ? Sang-e Chakmank</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maharanbad? Cheshme Ali?</td>
</tr>
</tbody>
</table>

soft ware*	Formative Phase	Ghar-e Kambarand (from Layer 6 upwards), Maharanbad
		Aesopic Neolithic
		Ghare-Kambarand, Ghar-e Hotu

* heavily chaff-tempered, low-fired, hand-made, not decorated

Succession of Neolithic Phases on the Central Iranian Plateau
(from: Shahmirzadi 1995, translated by Christoph Werner)

In April 1994, the First National Archaeological Symposium of the Islamic Republic of Iran was held in Susa attended by 38 contributing scholars. Five of the contributions dealt with prehistory (B. Boustan on cave exploration in Iran; M.S. Salehi on accounting in Tappeh Zaghaleh; H. Fazeli on social organization in prehistory; M. Kaboli on his Qomrud survey; S. Malek...
Shahmirzadi on the Neolithic -Protohistoric chronology of Khuzestan). The second symposium followed this year in Bam. Kamyar Abdi, Oriental Institute of Chicago, recently started to offer in the ANE mailing list the Archaeological News from Iran (1-4 already issued, contact: kabd@midway.uuchicago.edu).

Under the joint editorship of Alizadeh, Shahmirzadeh, and Yousef Majidzadeh, the "Studies in Honor of Eraz O. Negahban" are currently being prepared for publication (deadline was 31st of May, 1996); it will contain some contributions on the Iranian Neolithic.

Bibliography (Neolithic research only)

1994b Prehistoric Kobri Bonan <Farsi, with English summary>. Journal of the Faculty of Letters and Humanities of the University of Kerman 4.2 (NS): 1-16. University of Kerman, Literature Faculty

Shahmirzadi S.M. 1988 "Status" in the Neolithic villages as displayed in the burial customs with emphasis on Zagheh <Farsi, with English summary>. Madjalle-ye-Bastanshenasi wa Tarikh (Iranian Journal of Archaeology and History) 2.2-2: 12. Tehran, Iran University Press

Current Research on the Neolithic of Anatolia by the Prehistory Section, University of Istanbul

Ufuk Esin and Nur Balkan-Atli University of Istanbul

The Aşkılı Höyük Project, begun in 1989, has been investigating several areas of a large, well-preserved aceramic Neolithic settlement in the province of Aksaray in central Anatolia. The specialists involved in the research include: Director: Ufuk Esin (Istanbul University [IU]) Deputy Director: Savas Harmankaya (IU) Architecture: M. Ozbasaran (IU) and E. Bicakci (IU) Fauna: H.дутенсшю (Groning [UG]) Flora: W. van Zeist (UG), H. Woldring (UG), G.J. de Roller (UG), and A. Rosen: phytoliths (Tel Aviv U.) Lithics: N. Balkan-Ati (IU), D. Binder: technology (CNRS-Valbonne), F. Abbès: technology (CNRS-Jalès), and P. Anderson: microtrace analysis (CNRS-Jalès) Ground stone: M. Davis (New York) Geomorphology: C. Kuzucuoglu (CNRS-Neudon) and Oğuz Erol (IU)

Bone industry: G. Egeci (IU) Ethnobotany: F. Eneg (Washington)

The Aksaray Project, directed by U. Esin, includes an intensive all-period survey conducted by S. Gülçür in the Aksaray district since 1993. As a result of this effort, two new sites will be excavated in 1996:

1) Musular, an aceramic Neolithic site across the Melendiz River from Aşkılı Höyük. The excavation will be undertaken by the Aksaray Museum (M. Özbaran, scientific consultant).

2) Övercin Kayası a prehistoric pottery-bearing site found in 1994. The site will also be excavated by the Aksaray Museum (S. Gülçür, scientific consultant).

The Obsidian Research Project is a program run parallel to the Aksaray Project. Co-directed by N. Balkan-Ati (IU) and M.-C. Cauvin (CNRS-Jalès), the research includes a survey to locate obsidian sources, workshops and prehistoric sites in the Aksaray, Niğde and Nevşehir districts of Cappadocia.

The Kastamonu District Survey, an all-period survey project led by A. Özdoğan (IU) and A. Tibet and C. Marro (French Research Institute, Istanbul) was begun in 1995.

In Thrace the Kırklaireli Höyük Excavations, led by M. Özdoğan (IU) and H. Parzinger (Berlin), concentrate on two sections: the Middle Chalcolithic Aşağı Pınar area and the Late Chalcolithic–Early Bronze Kanli Geçit sector.

The Edirne Museum is undertaking the Lalapaşan Dolmen Excavation project, with M. Akman the field director and M. Özdoğan the scientific consultant.

The Menekçe Çatlık Excavations are under way by the Tekirdağ Museum on the Marmara coast in Tekerdag (M. Özdoğan, scientific consultant and A. Özdoğan, field director).

The all-period Tekirdağ Survey in the Işıklar (Ganos) region was begun in 1993 under the direction of S. Harmankaya.

TAY (Türkei Arkeologîcî Yerleşmereleri) is a "database on paper" for archaeological settlements in Anatolia and eastern Thrace run S. Harmankaya and O. Tanindi. The first volume (Paleolithic and Epipaleolithic) has already appeared (see New Books, below), and additional volumes on the Neolithic to Iron Age periods will follow shortly.

How the Rabbit killed Flint

Long ago the animals were very much afraid of Flint, who lived up in the mountain, because he killed so many of them. They wanted to destroy him, but did not know how, for it was very dangerous for any of them to venture near him.

Several of them had tried to kill him, but they were very unsuccessful; in fact, most of them were killed in the attempt.

After several of them had tried, the Rabbit, who was a bold leader, undertook the task. He fasted and made medicine for four days, and then he went up to the mountain where Flint lived. Near the summit he saw a queer-looking animal standing before a cave. It was larger than a deer and seemed to be made of bone or horn.

The Rabbit shouted 'Hello,' and he answered 'Hello.' The Rabbit had expected him to invite him in, but he did not, and he was afraid to go in alone anyway; so he said, 'Is your name Flint?' Flint said, 'Yes, that is my name.' Then the Rabbit said, 'How are your people?' Flint said, 'I have none. This was just what the Rabbit wanted to know, for he was afraid that Flint had a family that would revenge his death if he should kill him. All this time the Rabbit was trying to think of some way by which he could take Flint off his guard and kill him, but he could not think of any, so he said, 'My name is Red Liver, and I thought I would come by and ask you to come and see me some day.'

He would not tell his real name, for he was afraid that, if Flint knew that, he would try to kill him by sorcery, and he knew that
Flint’s medicine would likely be stronger than his; for Flint had killed more animals.

Flint said, ‘I would go to see you, but I do not know where you live.’

Then Rabbit said, ‘Why not come home with me and eat supper; we have just made a fresh pot of Kenutchie.’

Then Flint followed the Rabbit, for he really wanted to know where he lived, so that he could come and kill his family when the Rabbit was away from home. They went down to the Rabbit’s home; and, as the weather was warm, they ate supper on the grass before the hole. When they had finished they lay down, and in a short time Flint was fast asleep.

The Rabbit called to him several times, to be sure that he was not shamming, and then he quickly picked up a saxe and mallet that he had prepared beforehand, ran over to flint, and drove it through him at one blow. Then he ran as hard as he could for his hole, but before he could reach it there was a mighty explosion, and Flint flew into thousands of pieces. One of them hit the Rabbit as he ran and cut off his tail. He stayed in his hole until everything was quiet. Then he stole out to take a look around and another piece hit him on the lip and split it. Flint had exploded and the pieces went in every direction, and that is why we find flint all over the world, but only in small pieces.

Flint finally had his revenge though; for, after men came, they killed animals with arrows tipped with pieces of flint.

Notes and News

Meeting of the Non-Formal Tools Group at Chateau de Marouatte, 8th-9th of June, 1996

An enlarged NFT- Group was hosted in the Chateau de Marouatte, Dordogne by Lorraine Copeland from 7th- 10th of June, 1996. Her warm and charming hospitality had been the encouraging framework of another successful meeting of the group. While the first day was devoted to questions of international cooperation in chipped Neolithic Lithics analysis (see first contribution in this newsletter), the second day (9/6) concentrated on

1) clearing away of existing problems for the technological aspects of the NFTs,

2) issues of a necessary parameters list/ code system for primary products (planned Riverside Module, coordination: Leslie Quintero et al.), and

3) discussion on the first test of the Wembach Module made available by Bernd Müller-Neuhof (applying a spreadsheet analysis on the Yarmoukian material from Abu Snelshe, Jordan).

The meeting was attended by Douglas Baird, Manuela Bette-Bohn, Hans Georg Gebel, Bernd Müller-Neuhof, Leslie Quintero, Gary O. Rollefson (group coordinator), Klaus Schmidt, François Valla, and partly by Lorraine Copeland. Eric Coqueugniot, Avi Gopher, and Yoshihiro Nishiaki unfortunately could not join the Marouatte Meeting due to more important other commitments.

The NFT- Group report on the actual NFT-related issues will appear in the next issue of this newsletter.

Forthcoming Publications of ex oriente

The Prehistory of Jordan II: Perspectives from 1996, edited by H.G. Gebel, Z. Kafafi, and G. Rollefson (to appear as SENEPS 4) is in the editorial process. 30 % of the contributions arrived. For inquiries, please contact H.G. Gebel, Seminar für Vorderasiatische Altertumskunde, Bitterstr. 8-12, D-14195 Berlin (Fax 0049 30 8314252; e-mail: hgebel@fub46.zedat.fu-berlin.de).

Recent Doctoral Dissertations and New Books

BOYD B.